- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Zhang, Jeff Jun (2)
-
Jiao, Xun (1)
-
Liu, Tao (1)
-
Ma, Dongning (1)
-
Pan, Chen (1)
-
Sookhak, Mehdi (1)
-
Wang, Ruixuan (1)
-
Xie, Mimi (1)
-
Yin, Xunzhao (1)
-
Zhang, Sizhe (1)
-
Zhang, Wen (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
As the next-generation battery substitute for IoT system, energy harvesting (EH) technology revolutionizes the IoT industry with environmental friendliness, ubiquitous accessibility, and sustainability, which enables various self-sustaining IoT applications. However, due to the weak and intermittent nature of EH power, the performance of EH-powered IoT systems as well as its collaborative routing mechanism can severely deteriorate, rendering unpleasant data package loss during each power failure. Such a phenomenon makes conventional routing policies and energy allocation strategies impractical. Given the complexity of the problem, reinforcement learning (RL) appears to be one of the most promising and applicable methods to address this challenge. Nevertheless, although the energy allocation and routing policy are jointly optimized by the RL method, due to the energy restriction of EH devices, the inappropriate configuration of multi-hop network topology severely degrades the data collection performance. Therefore, this article first conducts a thorough mathematical discussion and develops the topology design and validation algorithm under energy harvesting scenarios. Then, this article developsDeepIoTRouting, a distributed and scalable deep reinforcement learning (DRL)-based approach, to address the routing and energy allocation jointly for the energy harvesting powered distributed IoT system. The experimental results show that with topology optimization,DeepIoTRoutingachieves at least 38.71% improvement on the amount of data delivery to sink in a 20-device IoT network, which significantly outperforms state-of-the-art methods.more » « less
-
Zhang, Sizhe; Wang, Ruixuan; Ma, Dongning; Zhang, Jeff Jun; Yin, Xunzhao; Jiao, Xun (, 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE))
An official website of the United States government
